C.U.SHAH UNIVERSITY Summer Examination-2018

Subject Name: Linear Algebra-II Subject Code: 4SC04LIA1/4SC04MTC2 Semester: 4 Date :01/05/2018

Branch: B.Sc. (Mathematics, Physics) Time : 10:30 To 01:30 Marks : 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1	a)	Attempt the following questions: Define: Inner product space	(14) (01) (01)
	b)	Find angle between $(2, -1, 3)$ and $(3, 0, 2)$.	(01)
	c)	Define:Linear transformation	(01)
	d)	True/false: Every vector space is inner product space.	(01)
	e)	Define: Orthonormal basis	(01)
	f)	If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is orthogonal then find $ Tx $ where $x = (2,3)$.	(01)
	g)	State Cauchy-Swartz inequality for norm.	(01)
	h)	True/false: Every inner product space is norm linear space.	(01)
	i)	What do you mean by Conics and Quadrics ?	(01)
	j)	True/False: Constant map is linear transformation.	(01)
	k)	Write orthonormal basis of M_{22} .	(01)
	l)	True/False: If $\langle u, v \rangle = 0$ then $u \perp v$.	(01)
	m)	If <i>T</i> is linear transformation then show that $T(0) = 0$.	(01)
	n)	If $u = (5, -4, 0)$ then find unit vector along u .	(01)
Attempt	any f	our questions from Q-2 to Q-8.	

$$\left\{ \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 5 & 4 \end{bmatrix} \right\} \text{in } M_{22}.$$

	b)	Show that the medians of triangle are concurrent.	(07)
Q-3	a)	Attempt all questions Using gram-Schmidt Orthogonalization process find orthogonal set from the	(14) (07)
		$set{(1, 0, 2), (0, 1, 1), (-1, 1, 3)}.$	
	b)	Prove that a parallelogram is rectangle iff the diagonal are of equal length.	(05)
	c)	Prove that if A is orthogonal matrix then $det(A) = \pm 1$.	(02)
Q-4	``	Attempt all questions	(14)
	a) b)	State and prove Riesz-representation theorem.	(08) (02)
		If $x \perp y$ and $x \perp z$ then show that $x \perp (\alpha y + \beta z) \forall \alpha, \beta \in R$.	(03) (02)
	c)		(03)
0.5		true.	(14)
Q-5		Attempt all questions $[1 \ 0 \ 1 \ -2]$	(14) (07)
	a)	Find determinant of $\begin{bmatrix} 1 & 0 & 1 & -2 \\ 0 & 0 & -4 & 0 \\ 5 & 7 & 8 & 5 \\ 0 & 2 & 2 & -9 \end{bmatrix}$ by using definition.	(07)
	b)	With usual notation and figure show that $R_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ and	(07)
		$\rho_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix}.$	
Q-6		Attempt all questions	(14)
	a)		(07)
	1 \	x + 5z = 2.	
	b)	Show that a linear transformation T from \mathbb{R}^n to \mathbb{R}^n is orthogonal iff the	(07)
		vectors $T(e_1)$, $T(e_2)$,, $T(e_n)$ form an orthonormal basis of R^n , where e_1, e_2, \dots, e_n are orthonormal basis of R^n .	
Q-7		Attempt all questions	(14)
	a)	Show that the matrix	(06)
		$A = \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}$ is orthogonal matrix.	
	b)	Show that $det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}$.	(04)
	c)	Find the Eigen values of $= \begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{pmatrix}$.	(04)
Q-8	a)	Attempt all questions State and Caley-Hamilton theorem and verify it for A= $\begin{pmatrix} 3 & 0 & 1 \\ -1 & 2 & 2 \\ 2 & 0 & 3 \end{pmatrix}$ also	(14) (07)
	b)	find A^{-3} if possible. Reduce the equation $3x^2 + 2xy + 4yz + 2xz - 2x - 14y - 2z = 0$ into standard form.	(07)

